跳转到内容
View in the app

A better way to browse. Learn more.

彼岸论坛

A full-screen app on your home screen with push notifications, badges and more.

To install this app on iOS and iPadOS
  1. Tap the Share icon in Safari
  2. Scroll the menu and tap Add to Home Screen.
  3. Tap Add in the top-right corner.
To install this app on Android
  1. Tap the 3-dot menu (⋮) in the top-right corner of the browser.
  2. Tap Add to Home screen or Install app.
  3. Confirm by tapping Install.
欢迎抵达彼岸 彼岸花开 此处谁在 -彼岸论坛

[Python] 时间序列进行异常检测(通过近 24h 数据) Python

发表于

最近被派了个活,对一些指标进行异常检测并提示。了解了几天相关知识了,有几问题想请教一下大家。

数据特点 --- 需要检测的数据指标非常多,1k+ ,好消息就是大多数指标都比较类似 --- 时序图同一类型长的差不多 (实在太多了再找人筛点)

对于点异常的判断,考虑的是使用孤立森林。 一段时间内比较正常的数据作为模型建立的基础数据集。每隔一段时间(1h?)采集过去 24h 内所有的点,将两个数据集合并在一起,看看这 24 个小时里面有没有异常点。 尝试了一下,预测效果还算 ok ,那种明显突出的都能抓到。 --- 我理解这就是动态阈值(参数又多,人工定阈值太难了)

难点是时间序列 --- 设备指标变化趋势有没有问题。比如本来是周期性的,其中一块突然异常波动一下,但是没超过阈值。比如液位、温度

长期趋势的异常检测 --- 直接使用 prophet 了,尝试了几个指标拟合曲线好像还行。 prophet 适用于长时间的,强季节性的数据,而且对于调参来说也比较简单。但是要求就是数据量要大,时间跨度也不能很短。

我想询问大家,对于短时间(一周或者一天 24h )的异常检测,应该怎么做呢? 对于比较平稳的时间序列,我想的是使用 ARMA ,然后通过残差和设置阈值进行对比,判定异常。 比如根据一周的数据(采样频率 30min)进行 fit ,预测过去 2h 数据,通过和实际数据的对比,进行判断。

但是 pq 的选择还得慢慢调,同时,对于一些比较陡峭的趋势,预测之间就飞了。。。。

想问问大家有什么比较好的方法推荐吗。

Featured Replies

No posts to show

创建帐户或登录来提出意见

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.